direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C5×C24.C22, C2.7(D4×C20), C22⋊C4⋊5C20, (C2×C42)⋊2C10, (C2×C20).358D4, C10.138(C4×D4), C23.8(C2×C20), C24.2(C2×C10), C22.37(D4×C10), C2.C42⋊3C10, (C23×C10).2C22, C10.134(C4⋊D4), C10.64(C4.4D4), (C22×C20).33C22, C22.37(C22×C20), C23.61(C22×C10), C10.77(C42⋊C2), C10.33(C42⋊2C2), (C22×C10).452C23, C10.89(C22.D4), (C2×C4×C20)⋊3C2, (C2×C4⋊C4)⋊3C10, (C10×C4⋊C4)⋊30C2, C2.3(C5×C4⋊D4), (C5×C22⋊C4)⋊17C4, (C2×C4).34(C2×C20), (C2×C4).101(C5×D4), C2.2(C5×C4.4D4), (C2×C20).364(C2×C4), (C2×C10).604(C2×D4), (C2×C22⋊C4).6C10, C2.3(C5×C42⋊2C2), C22.22(C5×C4○D4), (C10×C22⋊C4).26C2, (C22×C10).87(C2×C4), (C22×C4).88(C2×C10), (C5×C2.C42)⋊5C2, C2.10(C5×C42⋊C2), (C2×C10).212(C4○D4), C2.5(C5×C22.D4), (C2×C10).325(C22×C4), SmallGroup(320,889)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×C24.C22
G = < a,b,c,d,e,f,g | a5=b2=c2=d2=e2=1, f2=e, g2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, fbf-1=bc=cb, gbg-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd, ef=fe, eg=ge >
Subgroups: 322 in 190 conjugacy classes, 90 normal (62 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, C23, C23, C23, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C24, C20, C2×C10, C2×C10, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C24.C22, C4×C20, C5×C22⋊C4, C5×C22⋊C4, C5×C4⋊C4, C22×C20, C23×C10, C5×C2.C42, C2×C4×C20, C10×C22⋊C4, C10×C4⋊C4, C5×C24.C22
Quotients: C1, C2, C4, C22, C5, C2×C4, D4, C23, C10, C22×C4, C2×D4, C4○D4, C20, C2×C10, C42⋊C2, C4×D4, C4⋊D4, C22.D4, C4.4D4, C42⋊2C2, C2×C20, C5×D4, C22×C10, C24.C22, C22×C20, D4×C10, C5×C4○D4, C5×C42⋊C2, D4×C20, C5×C4⋊D4, C5×C22.D4, C5×C4.4D4, C5×C42⋊2C2, C5×C24.C22
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(6 142)(7 143)(8 144)(9 145)(10 141)(16 154)(17 155)(18 151)(19 152)(20 153)(21 160)(22 156)(23 157)(24 158)(25 159)(31 128)(32 129)(33 130)(34 126)(35 127)(46 79)(47 80)(48 76)(49 77)(50 78)(61 75)(62 71)(63 72)(64 73)(65 74)(81 100)(82 96)(83 97)(84 98)(85 99)(86 123)(87 124)(88 125)(89 121)(90 122)(91 108)(92 109)(93 110)(94 106)(95 107)(101 131)(102 132)(103 133)(104 134)(105 135)(111 149)(112 150)(113 146)(114 147)(115 148)(116 139)(117 140)(118 136)(119 137)(120 138)
(1 30)(2 26)(3 27)(4 28)(5 29)(6 151)(7 152)(8 153)(9 154)(10 155)(11 45)(12 41)(13 42)(14 43)(15 44)(16 145)(17 141)(18 142)(19 143)(20 144)(21 127)(22 128)(23 129)(24 130)(25 126)(31 156)(32 157)(33 158)(34 159)(35 160)(36 59)(37 60)(38 56)(39 57)(40 58)(46 83)(47 84)(48 85)(49 81)(50 82)(51 67)(52 68)(53 69)(54 70)(55 66)(61 91)(62 92)(63 93)(64 94)(65 95)(71 109)(72 110)(73 106)(74 107)(75 108)(76 99)(77 100)(78 96)(79 97)(80 98)(86 123)(87 124)(88 125)(89 121)(90 122)(101 131)(102 132)(103 133)(104 134)(105 135)(111 149)(112 150)(113 146)(114 147)(115 148)(116 139)(117 140)(118 136)(119 137)(120 138)
(1 66)(2 67)(3 68)(4 69)(5 70)(6 18)(7 19)(8 20)(9 16)(10 17)(11 36)(12 37)(13 38)(14 39)(15 40)(21 35)(22 31)(23 32)(24 33)(25 34)(26 51)(27 52)(28 53)(29 54)(30 55)(41 60)(42 56)(43 57)(44 58)(45 59)(46 79)(47 80)(48 76)(49 77)(50 78)(61 75)(62 71)(63 72)(64 73)(65 74)(81 100)(82 96)(83 97)(84 98)(85 99)(86 119)(87 120)(88 116)(89 117)(90 118)(91 108)(92 109)(93 110)(94 106)(95 107)(101 115)(102 111)(103 112)(104 113)(105 114)(121 140)(122 136)(123 137)(124 138)(125 139)(126 159)(127 160)(128 156)(129 157)(130 158)(131 148)(132 149)(133 150)(134 146)(135 147)(141 155)(142 151)(143 152)(144 153)(145 154)
(1 12)(2 13)(3 14)(4 15)(5 11)(6 160)(7 156)(8 157)(9 158)(10 159)(16 130)(17 126)(18 127)(19 128)(20 129)(21 142)(22 143)(23 144)(24 145)(25 141)(26 42)(27 43)(28 44)(29 45)(30 41)(31 152)(32 153)(33 154)(34 155)(35 151)(36 70)(37 66)(38 67)(39 68)(40 69)(46 91)(47 92)(48 93)(49 94)(50 95)(51 56)(52 57)(53 58)(54 59)(55 60)(61 83)(62 84)(63 85)(64 81)(65 82)(71 98)(72 99)(73 100)(74 96)(75 97)(76 110)(77 106)(78 107)(79 108)(80 109)(86 131)(87 132)(88 133)(89 134)(90 135)(101 123)(102 124)(103 125)(104 121)(105 122)(111 138)(112 139)(113 140)(114 136)(115 137)(116 150)(117 146)(118 147)(119 148)(120 149)
(1 134 12 89)(2 135 13 90)(3 131 14 86)(4 132 15 87)(5 133 11 88)(6 47 160 92)(7 48 156 93)(8 49 157 94)(9 50 158 95)(10 46 159 91)(16 78 130 107)(17 79 126 108)(18 80 127 109)(19 76 128 110)(20 77 129 106)(21 71 142 98)(22 72 143 99)(23 73 144 100)(24 74 145 96)(25 75 141 97)(26 105 42 122)(27 101 43 123)(28 102 44 124)(29 103 45 125)(30 104 41 121)(31 63 152 85)(32 64 153 81)(33 65 154 82)(34 61 155 83)(35 62 151 84)(36 116 70 150)(37 117 66 146)(38 118 67 147)(39 119 68 148)(40 120 69 149)(51 114 56 136)(52 115 57 137)(53 111 58 138)(54 112 59 139)(55 113 60 140)
(1 64 30 94)(2 65 26 95)(3 61 27 91)(4 62 28 92)(5 63 29 93)(6 149 151 111)(7 150 152 112)(8 146 153 113)(9 147 154 114)(10 148 155 115)(11 85 45 48)(12 81 41 49)(13 82 42 50)(14 83 43 46)(15 84 44 47)(16 135 145 105)(17 131 141 101)(18 132 142 102)(19 133 143 103)(20 134 144 104)(21 124 127 87)(22 125 128 88)(23 121 129 89)(24 122 130 90)(25 123 126 86)(31 139 156 116)(32 140 157 117)(33 136 158 118)(34 137 159 119)(35 138 160 120)(36 99 59 76)(37 100 60 77)(38 96 56 78)(39 97 57 79)(40 98 58 80)(51 107 67 74)(52 108 68 75)(53 109 69 71)(54 110 70 72)(55 106 66 73)
G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (6,142)(7,143)(8,144)(9,145)(10,141)(16,154)(17,155)(18,151)(19,152)(20,153)(21,160)(22,156)(23,157)(24,158)(25,159)(31,128)(32,129)(33,130)(34,126)(35,127)(46,79)(47,80)(48,76)(49,77)(50,78)(61,75)(62,71)(63,72)(64,73)(65,74)(81,100)(82,96)(83,97)(84,98)(85,99)(86,123)(87,124)(88,125)(89,121)(90,122)(91,108)(92,109)(93,110)(94,106)(95,107)(101,131)(102,132)(103,133)(104,134)(105,135)(111,149)(112,150)(113,146)(114,147)(115,148)(116,139)(117,140)(118,136)(119,137)(120,138), (1,30)(2,26)(3,27)(4,28)(5,29)(6,151)(7,152)(8,153)(9,154)(10,155)(11,45)(12,41)(13,42)(14,43)(15,44)(16,145)(17,141)(18,142)(19,143)(20,144)(21,127)(22,128)(23,129)(24,130)(25,126)(31,156)(32,157)(33,158)(34,159)(35,160)(36,59)(37,60)(38,56)(39,57)(40,58)(46,83)(47,84)(48,85)(49,81)(50,82)(51,67)(52,68)(53,69)(54,70)(55,66)(61,91)(62,92)(63,93)(64,94)(65,95)(71,109)(72,110)(73,106)(74,107)(75,108)(76,99)(77,100)(78,96)(79,97)(80,98)(86,123)(87,124)(88,125)(89,121)(90,122)(101,131)(102,132)(103,133)(104,134)(105,135)(111,149)(112,150)(113,146)(114,147)(115,148)(116,139)(117,140)(118,136)(119,137)(120,138), (1,66)(2,67)(3,68)(4,69)(5,70)(6,18)(7,19)(8,20)(9,16)(10,17)(11,36)(12,37)(13,38)(14,39)(15,40)(21,35)(22,31)(23,32)(24,33)(25,34)(26,51)(27,52)(28,53)(29,54)(30,55)(41,60)(42,56)(43,57)(44,58)(45,59)(46,79)(47,80)(48,76)(49,77)(50,78)(61,75)(62,71)(63,72)(64,73)(65,74)(81,100)(82,96)(83,97)(84,98)(85,99)(86,119)(87,120)(88,116)(89,117)(90,118)(91,108)(92,109)(93,110)(94,106)(95,107)(101,115)(102,111)(103,112)(104,113)(105,114)(121,140)(122,136)(123,137)(124,138)(125,139)(126,159)(127,160)(128,156)(129,157)(130,158)(131,148)(132,149)(133,150)(134,146)(135,147)(141,155)(142,151)(143,152)(144,153)(145,154), (1,12)(2,13)(3,14)(4,15)(5,11)(6,160)(7,156)(8,157)(9,158)(10,159)(16,130)(17,126)(18,127)(19,128)(20,129)(21,142)(22,143)(23,144)(24,145)(25,141)(26,42)(27,43)(28,44)(29,45)(30,41)(31,152)(32,153)(33,154)(34,155)(35,151)(36,70)(37,66)(38,67)(39,68)(40,69)(46,91)(47,92)(48,93)(49,94)(50,95)(51,56)(52,57)(53,58)(54,59)(55,60)(61,83)(62,84)(63,85)(64,81)(65,82)(71,98)(72,99)(73,100)(74,96)(75,97)(76,110)(77,106)(78,107)(79,108)(80,109)(86,131)(87,132)(88,133)(89,134)(90,135)(101,123)(102,124)(103,125)(104,121)(105,122)(111,138)(112,139)(113,140)(114,136)(115,137)(116,150)(117,146)(118,147)(119,148)(120,149), (1,134,12,89)(2,135,13,90)(3,131,14,86)(4,132,15,87)(5,133,11,88)(6,47,160,92)(7,48,156,93)(8,49,157,94)(9,50,158,95)(10,46,159,91)(16,78,130,107)(17,79,126,108)(18,80,127,109)(19,76,128,110)(20,77,129,106)(21,71,142,98)(22,72,143,99)(23,73,144,100)(24,74,145,96)(25,75,141,97)(26,105,42,122)(27,101,43,123)(28,102,44,124)(29,103,45,125)(30,104,41,121)(31,63,152,85)(32,64,153,81)(33,65,154,82)(34,61,155,83)(35,62,151,84)(36,116,70,150)(37,117,66,146)(38,118,67,147)(39,119,68,148)(40,120,69,149)(51,114,56,136)(52,115,57,137)(53,111,58,138)(54,112,59,139)(55,113,60,140), (1,64,30,94)(2,65,26,95)(3,61,27,91)(4,62,28,92)(5,63,29,93)(6,149,151,111)(7,150,152,112)(8,146,153,113)(9,147,154,114)(10,148,155,115)(11,85,45,48)(12,81,41,49)(13,82,42,50)(14,83,43,46)(15,84,44,47)(16,135,145,105)(17,131,141,101)(18,132,142,102)(19,133,143,103)(20,134,144,104)(21,124,127,87)(22,125,128,88)(23,121,129,89)(24,122,130,90)(25,123,126,86)(31,139,156,116)(32,140,157,117)(33,136,158,118)(34,137,159,119)(35,138,160,120)(36,99,59,76)(37,100,60,77)(38,96,56,78)(39,97,57,79)(40,98,58,80)(51,107,67,74)(52,108,68,75)(53,109,69,71)(54,110,70,72)(55,106,66,73)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (6,142)(7,143)(8,144)(9,145)(10,141)(16,154)(17,155)(18,151)(19,152)(20,153)(21,160)(22,156)(23,157)(24,158)(25,159)(31,128)(32,129)(33,130)(34,126)(35,127)(46,79)(47,80)(48,76)(49,77)(50,78)(61,75)(62,71)(63,72)(64,73)(65,74)(81,100)(82,96)(83,97)(84,98)(85,99)(86,123)(87,124)(88,125)(89,121)(90,122)(91,108)(92,109)(93,110)(94,106)(95,107)(101,131)(102,132)(103,133)(104,134)(105,135)(111,149)(112,150)(113,146)(114,147)(115,148)(116,139)(117,140)(118,136)(119,137)(120,138), (1,30)(2,26)(3,27)(4,28)(5,29)(6,151)(7,152)(8,153)(9,154)(10,155)(11,45)(12,41)(13,42)(14,43)(15,44)(16,145)(17,141)(18,142)(19,143)(20,144)(21,127)(22,128)(23,129)(24,130)(25,126)(31,156)(32,157)(33,158)(34,159)(35,160)(36,59)(37,60)(38,56)(39,57)(40,58)(46,83)(47,84)(48,85)(49,81)(50,82)(51,67)(52,68)(53,69)(54,70)(55,66)(61,91)(62,92)(63,93)(64,94)(65,95)(71,109)(72,110)(73,106)(74,107)(75,108)(76,99)(77,100)(78,96)(79,97)(80,98)(86,123)(87,124)(88,125)(89,121)(90,122)(101,131)(102,132)(103,133)(104,134)(105,135)(111,149)(112,150)(113,146)(114,147)(115,148)(116,139)(117,140)(118,136)(119,137)(120,138), (1,66)(2,67)(3,68)(4,69)(5,70)(6,18)(7,19)(8,20)(9,16)(10,17)(11,36)(12,37)(13,38)(14,39)(15,40)(21,35)(22,31)(23,32)(24,33)(25,34)(26,51)(27,52)(28,53)(29,54)(30,55)(41,60)(42,56)(43,57)(44,58)(45,59)(46,79)(47,80)(48,76)(49,77)(50,78)(61,75)(62,71)(63,72)(64,73)(65,74)(81,100)(82,96)(83,97)(84,98)(85,99)(86,119)(87,120)(88,116)(89,117)(90,118)(91,108)(92,109)(93,110)(94,106)(95,107)(101,115)(102,111)(103,112)(104,113)(105,114)(121,140)(122,136)(123,137)(124,138)(125,139)(126,159)(127,160)(128,156)(129,157)(130,158)(131,148)(132,149)(133,150)(134,146)(135,147)(141,155)(142,151)(143,152)(144,153)(145,154), (1,12)(2,13)(3,14)(4,15)(5,11)(6,160)(7,156)(8,157)(9,158)(10,159)(16,130)(17,126)(18,127)(19,128)(20,129)(21,142)(22,143)(23,144)(24,145)(25,141)(26,42)(27,43)(28,44)(29,45)(30,41)(31,152)(32,153)(33,154)(34,155)(35,151)(36,70)(37,66)(38,67)(39,68)(40,69)(46,91)(47,92)(48,93)(49,94)(50,95)(51,56)(52,57)(53,58)(54,59)(55,60)(61,83)(62,84)(63,85)(64,81)(65,82)(71,98)(72,99)(73,100)(74,96)(75,97)(76,110)(77,106)(78,107)(79,108)(80,109)(86,131)(87,132)(88,133)(89,134)(90,135)(101,123)(102,124)(103,125)(104,121)(105,122)(111,138)(112,139)(113,140)(114,136)(115,137)(116,150)(117,146)(118,147)(119,148)(120,149), (1,134,12,89)(2,135,13,90)(3,131,14,86)(4,132,15,87)(5,133,11,88)(6,47,160,92)(7,48,156,93)(8,49,157,94)(9,50,158,95)(10,46,159,91)(16,78,130,107)(17,79,126,108)(18,80,127,109)(19,76,128,110)(20,77,129,106)(21,71,142,98)(22,72,143,99)(23,73,144,100)(24,74,145,96)(25,75,141,97)(26,105,42,122)(27,101,43,123)(28,102,44,124)(29,103,45,125)(30,104,41,121)(31,63,152,85)(32,64,153,81)(33,65,154,82)(34,61,155,83)(35,62,151,84)(36,116,70,150)(37,117,66,146)(38,118,67,147)(39,119,68,148)(40,120,69,149)(51,114,56,136)(52,115,57,137)(53,111,58,138)(54,112,59,139)(55,113,60,140), (1,64,30,94)(2,65,26,95)(3,61,27,91)(4,62,28,92)(5,63,29,93)(6,149,151,111)(7,150,152,112)(8,146,153,113)(9,147,154,114)(10,148,155,115)(11,85,45,48)(12,81,41,49)(13,82,42,50)(14,83,43,46)(15,84,44,47)(16,135,145,105)(17,131,141,101)(18,132,142,102)(19,133,143,103)(20,134,144,104)(21,124,127,87)(22,125,128,88)(23,121,129,89)(24,122,130,90)(25,123,126,86)(31,139,156,116)(32,140,157,117)(33,136,158,118)(34,137,159,119)(35,138,160,120)(36,99,59,76)(37,100,60,77)(38,96,56,78)(39,97,57,79)(40,98,58,80)(51,107,67,74)(52,108,68,75)(53,109,69,71)(54,110,70,72)(55,106,66,73) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(6,142),(7,143),(8,144),(9,145),(10,141),(16,154),(17,155),(18,151),(19,152),(20,153),(21,160),(22,156),(23,157),(24,158),(25,159),(31,128),(32,129),(33,130),(34,126),(35,127),(46,79),(47,80),(48,76),(49,77),(50,78),(61,75),(62,71),(63,72),(64,73),(65,74),(81,100),(82,96),(83,97),(84,98),(85,99),(86,123),(87,124),(88,125),(89,121),(90,122),(91,108),(92,109),(93,110),(94,106),(95,107),(101,131),(102,132),(103,133),(104,134),(105,135),(111,149),(112,150),(113,146),(114,147),(115,148),(116,139),(117,140),(118,136),(119,137),(120,138)], [(1,30),(2,26),(3,27),(4,28),(5,29),(6,151),(7,152),(8,153),(9,154),(10,155),(11,45),(12,41),(13,42),(14,43),(15,44),(16,145),(17,141),(18,142),(19,143),(20,144),(21,127),(22,128),(23,129),(24,130),(25,126),(31,156),(32,157),(33,158),(34,159),(35,160),(36,59),(37,60),(38,56),(39,57),(40,58),(46,83),(47,84),(48,85),(49,81),(50,82),(51,67),(52,68),(53,69),(54,70),(55,66),(61,91),(62,92),(63,93),(64,94),(65,95),(71,109),(72,110),(73,106),(74,107),(75,108),(76,99),(77,100),(78,96),(79,97),(80,98),(86,123),(87,124),(88,125),(89,121),(90,122),(101,131),(102,132),(103,133),(104,134),(105,135),(111,149),(112,150),(113,146),(114,147),(115,148),(116,139),(117,140),(118,136),(119,137),(120,138)], [(1,66),(2,67),(3,68),(4,69),(5,70),(6,18),(7,19),(8,20),(9,16),(10,17),(11,36),(12,37),(13,38),(14,39),(15,40),(21,35),(22,31),(23,32),(24,33),(25,34),(26,51),(27,52),(28,53),(29,54),(30,55),(41,60),(42,56),(43,57),(44,58),(45,59),(46,79),(47,80),(48,76),(49,77),(50,78),(61,75),(62,71),(63,72),(64,73),(65,74),(81,100),(82,96),(83,97),(84,98),(85,99),(86,119),(87,120),(88,116),(89,117),(90,118),(91,108),(92,109),(93,110),(94,106),(95,107),(101,115),(102,111),(103,112),(104,113),(105,114),(121,140),(122,136),(123,137),(124,138),(125,139),(126,159),(127,160),(128,156),(129,157),(130,158),(131,148),(132,149),(133,150),(134,146),(135,147),(141,155),(142,151),(143,152),(144,153),(145,154)], [(1,12),(2,13),(3,14),(4,15),(5,11),(6,160),(7,156),(8,157),(9,158),(10,159),(16,130),(17,126),(18,127),(19,128),(20,129),(21,142),(22,143),(23,144),(24,145),(25,141),(26,42),(27,43),(28,44),(29,45),(30,41),(31,152),(32,153),(33,154),(34,155),(35,151),(36,70),(37,66),(38,67),(39,68),(40,69),(46,91),(47,92),(48,93),(49,94),(50,95),(51,56),(52,57),(53,58),(54,59),(55,60),(61,83),(62,84),(63,85),(64,81),(65,82),(71,98),(72,99),(73,100),(74,96),(75,97),(76,110),(77,106),(78,107),(79,108),(80,109),(86,131),(87,132),(88,133),(89,134),(90,135),(101,123),(102,124),(103,125),(104,121),(105,122),(111,138),(112,139),(113,140),(114,136),(115,137),(116,150),(117,146),(118,147),(119,148),(120,149)], [(1,134,12,89),(2,135,13,90),(3,131,14,86),(4,132,15,87),(5,133,11,88),(6,47,160,92),(7,48,156,93),(8,49,157,94),(9,50,158,95),(10,46,159,91),(16,78,130,107),(17,79,126,108),(18,80,127,109),(19,76,128,110),(20,77,129,106),(21,71,142,98),(22,72,143,99),(23,73,144,100),(24,74,145,96),(25,75,141,97),(26,105,42,122),(27,101,43,123),(28,102,44,124),(29,103,45,125),(30,104,41,121),(31,63,152,85),(32,64,153,81),(33,65,154,82),(34,61,155,83),(35,62,151,84),(36,116,70,150),(37,117,66,146),(38,118,67,147),(39,119,68,148),(40,120,69,149),(51,114,56,136),(52,115,57,137),(53,111,58,138),(54,112,59,139),(55,113,60,140)], [(1,64,30,94),(2,65,26,95),(3,61,27,91),(4,62,28,92),(5,63,29,93),(6,149,151,111),(7,150,152,112),(8,146,153,113),(9,147,154,114),(10,148,155,115),(11,85,45,48),(12,81,41,49),(13,82,42,50),(14,83,43,46),(15,84,44,47),(16,135,145,105),(17,131,141,101),(18,132,142,102),(19,133,143,103),(20,134,144,104),(21,124,127,87),(22,125,128,88),(23,121,129,89),(24,122,130,90),(25,123,126,86),(31,139,156,116),(32,140,157,117),(33,136,158,118),(34,137,159,119),(35,138,160,120),(36,99,59,76),(37,100,60,77),(38,96,56,78),(39,97,57,79),(40,98,58,80),(51,107,67,74),(52,108,68,75),(53,109,69,71),(54,110,70,72),(55,106,66,73)]])
140 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | ··· | 4L | 4M | ··· | 4R | 5A | 5B | 5C | 5D | 10A | ··· | 10AB | 10AC | ··· | 10AJ | 20A | ··· | 20AV | 20AW | ··· | 20BT |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
140 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C5 | C10 | C10 | C10 | C10 | C20 | D4 | C4○D4 | C5×D4 | C5×C4○D4 |
kernel | C5×C24.C22 | C5×C2.C42 | C2×C4×C20 | C10×C22⋊C4 | C10×C4⋊C4 | C5×C22⋊C4 | C24.C22 | C2.C42 | C2×C42 | C2×C22⋊C4 | C2×C4⋊C4 | C22⋊C4 | C2×C20 | C2×C10 | C2×C4 | C22 |
# reps | 1 | 2 | 1 | 3 | 1 | 8 | 4 | 8 | 4 | 12 | 4 | 32 | 4 | 8 | 16 | 32 |
Matrix representation of C5×C24.C22 ►in GL5(𝔽41)
1 | 0 | 0 | 0 | 0 |
0 | 37 | 0 | 0 | 0 |
0 | 0 | 37 | 0 | 0 |
0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 16 |
40 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
32 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 0 | 0 |
0 | 32 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 39 |
0 | 0 | 0 | 1 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 9 |
G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,37,0,0,0,0,0,37,0,0,0,0,0,16,0,0,0,0,0,16],[40,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,1,1,0,0,0,0,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[32,0,0,0,0,0,0,32,0,0,0,32,0,0,0,0,0,0,1,1,0,0,0,39,40],[1,0,0,0,0,0,0,40,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,9] >;
C5×C24.C22 in GAP, Magma, Sage, TeX
C_5\times C_2^4.C_2^2
% in TeX
G:=Group("C5xC2^4.C2^2");
// GroupNames label
G:=SmallGroup(320,889);
// by ID
G=gap.SmallGroup(320,889);
# by ID
G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,1120,589,1408,1766,226]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=d^2=e^2=1,f^2=e,g^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,f*b*f^-1=b*c=c*b,g*b*g^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e>;
// generators/relations